43 épisodes
(9 h 19 min)
Épisodes
S2017 E1 • When Pi is Not 3.14
You’ve always been told that pi is 3.14. This is true, but this number is based on how we measure distance. Find out what happens to pi when we change the way we measure distance.
Première diffusion : 5 janvier 2017
S2017 E2 • Can a Chess Piece Explain Markov Chains?
In this episode probability mathematics and chess collide. What is the average number of steps it would take before a randomly moving knight returned to its starting square?
Première diffusion : 12 janvier 2017
S2017 E3 • Singularities Explained
Mathematician Kelsey Houston-Edwards explains exactly what singularities are and how they exist right under our noses.
Première diffusion : 19 janvier 2017
S2017 E4 • Kill the Mathematical Hydra
Mathematician Kelsey Houston-Edwards explains how to defeat a seemingly undefeatable monster using a rather unexpected mathematical proof. In this episode you’ll see mathematician vs monster, thought vs ferocity, cardinal vs ordinal. You won’t want to miss it.
Première diffusion : 26 janvier 2017
S2017 E5 • How Infinity Explains the Finite
Peano arithmetic proves many theories in mathematics but does have its limits. In order to prove certain things you have to step beyond these axioms. Sometimes you need infinity.
Première diffusion : 2 février 2017
S2017 E6 • The Mathematics of Quantum Computers
What is the math behind quantum computers? And why are quantum computers so amazing? Find out on this episode of Infinite Series.
Première diffusion : 16 février 2017
S2017 E7 • Splitting Rent with Triangles
You can find out how to fairly divide rent between three different people even when you don’t know the third person’s preferences! Find out how with Sperner’s Lemma.
Première diffusion : 23 février 2017
S2017 E8 • Infinite Chess
How long will it take to win a game of chess on an infinite chessboard?
Première diffusion : 2 mars 2017
S2017 E9 • 5 Unusual Proofs
Première diffusion : 9 mars 2017
S2017 E10 • Proving Pick's Theorem
Première diffusion : 16 mars 2017
S2017 E11 • What is a Random Walk?
Première diffusion : 23 mars 2017
S2017 E12 • Solving the Wolverine Problem with Graph Coloring
Première diffusion : 6 avril 2017
S2017 E13 • Can We Combine pi & e to Make a Rational Number?
Première diffusion : 13 avril 2017
S2017 E14 • How to Break Cryptography
Only 4 steps stand between you and the secrets hidden behind RSA cryptography. Find out how to crack the world’s most commonly used form of encryption.
Première diffusion : 20 avril 2017
S2017 E15 • Hacking at Quantum Speed with Shor's Algorithm
Classical computers struggle to crack modern encryption. But quantum computers using Shor’s Algorithm make short work of RSA cryptography. Find out how.
Première diffusion : 27 avril 2017
S2017 E16 • Building an Infinite Bridge
Using the harmonic series we can build an infinitely long bridge. It takes a very long time though. A faster method was discovered in 2009.
Première diffusion : 4 mai 2017
S2017 E17 • Topology Riddles
Can you turn your pants inside out without taking your feet off the ground?
Première diffusion : 11 mai 2017
S2017 E18 • The Devil's Staircase
Find out why Cantor’s Function is nicknamed the Devil’s Staircase.
Première diffusion : 19 mai 2017
S2017 E19 • Dissecting Hypercubes with Pascal's Triangle
Première diffusion : 1 juin 2017
S2017 E20 • Pantographs and the Geometry of Complex Functions
Première diffusion : 8 juin 2017
S2017 E21 • Voting Systems and the Condorcet Paradox
What is the best voting system? Voting seems relatively straightforward, yet four of the most widely used voting systems can produce four completely different winners.
Première diffusion : 15 juin 2017
S2017 E22 • Arrow's Impossibility Theorem
The bizarre Arrow’s Impossibility Theorem, or Arrow’s Paradox, shows a counterintuitive relationship between fair voting procedures and dictatorships.
Première diffusion : 22 juin 2017
S2017 E23 • Network Mathematics and Rival Factions
The theory of social networks allows us to mathematically model and analyze the relationships between governments, organizations and even the rival factions warring on Game of Thrones.
Première diffusion : 29 juin 2017
S2017 E24 • Making Probability Mathematical
What happened when a gambler asked for help from a mathematician? The formal study of Probability
Première diffusion : 13 juillet 2017
S2017 E25 • Why Computers are Bad at Algebra
The answer lies in the weirdness of floating-point numbers and the computer's perception of a number line.
Première diffusion : 21 juillet 2017
S2017 E26 • The Honeycombs of 4-Dimensional Bees ft. Joe Hanson
Why is there a hexagonal structure in honeycombs? Why not squares? Or asymmetrical blobby shapes? In 36 B.C., the Roman scholar Marcus Terentius Varro wrote about two of the leading theories of the day. First: bees have six legs, so they must obviously prefer six-sided shapes. But that charming piece of numerology did not fool the geometers of day. They provided a second theory: Hexagons are the most efficient shape. Bees use wax to build the honeycombs -- and producing that wax expends bee energy. The ideal honeycomb structure is one that minimizes the amount of wax needed, while maximizing storage -- and the hexagonal structure does this best.
Première diffusion : 3 août 2017
S2017 E27 • Stochastic Supertasks
What happens when you try to empty an urn full of infinite balls? It turns out that whether the vase is empty or full at the end of an infinite amount of time depends on what order you try to empty it in. Check out what happens when randomness and the Ross-Littlewood Paradox collide.
Première diffusion : 10 août 2017
S2017 E28 • Your Brain as Math - Part 1
Première diffusion : 22 août 2017
S2017 E29 • Simplicial Complexes - Your Brain as Math Part 2
Première diffusion : 23 août 2017
S2017 E30 • Your Mind Is Eight-Dimensional - Your Brain as Math Part 3
Première diffusion : 24 août 2017
S2017 E31 • How the Axiom of Choice Gives Sizeless Sets
Première diffusion : 14 septembre 2017
S2017 E32 • Higher-Dimensional Tic-Tac-Toe
Première diffusion : 21 septembre 2017
S2017 E33 • The Cops and Robbers Theorem
Première diffusion : 28 septembre 2017
S2017 E34 • How Many Cops to Catch a Robber?
Première diffusion : 6 octobre 2017
S2017 E35 • How to Generate Pseudorandom Numbers
Première diffusion : 12 octobre 2017
S2017 E36 • Crisis in the Foundation of Mathematics
Première diffusion : 19 octobre 2017
S2017 E37 • Hilbert\'s 15th Problem: Schubert Calculus
Première diffusion : 10 novembre 2017
S2017 E38 • The Heat Equation + Special Announcement!
Première diffusion : 17 novembre 2017
S2017 E39 • The Multiplication Multiverse
Première diffusion : 23 novembre 2017
S2017 E40 • Associahedra: The Shapes of Multiplication
Première diffusion : 30 novembre 2017
S2017 E41 • (Almost) Unbreakable Crypto
Despite what many believe, the essence of encryption isn’t really about factoring or prime numbers. So what is it about?
Première diffusion : 12 décembre 2017
S2017 E42 • This Video was Not Encrypted with RSA
Last time, we discussed symmetric encryption protocols, which rely on a user-supplied number called "the key" to drive an algorithm that scrambles messages. Since anything encrypted with a given key can only be decrypted with the same key, Alice and Bob can exchange secure messages once they agree on a key. But what if Alice and Bob are strangers who can only communicate over a channel monitored by eavesdroppers like Eve? How do they agree on a secret key in the first place?
Première diffusion : 14 décembre 2017
S2017 E43 • Topology vs 'a' Topology
What exactly is a topological space?
Première diffusion : 21 décembre 2017